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SUMMARY

There have been a few recent numerical implementations of the stress-jump condition at the interface
of conjugate flows, which couple the governing equations for flows in the porous and homogenous
fluid domains. These previous demonstration cases were for two-dimensional, planar flows with simple
geometries, for example, flow over a porous layer or flow through a porous plug. The present study
implements the interfacial stress-jump condition for a non-planar flow with three velocity components,
which is more realistic in terms of practical flow applications. The steady, laminar, Newtonian flow in a
stirred micro-bioreactor with a porous scaffold inside was investigated. It is shown how to implement the
interfacial jump condition on the radial, axial, and swirling velocity components. To avoid a full three-
dimensional simulation, the flow is assumed to be independent of the azimuthal direction, which makes
it an axisymmetric flow with a swirling velocity. The present interface treatment is suitable for non-flat
surfaces, which is achieved by applying the finite volume method based on body-fitted and multi-block
grids. The numerical simulations show that a vortex breakdown bubble, attached to the free surface,
occurs above a certain Reynolds number. The presence of the porous scaffold delays the onset of vortex
breakdown and confines it to a region above the scaffold. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Flows in porous media are of importance in many engineering applications, including tissue-
engineering scaffolds in bioreactors, polymeric micro-spheres for drug delivery, porous heat sink
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for enhanced heat transfer, etc. Such applications involve flows in two regions: homogenous fluid
and porous medium. To solve such flows, the numerical approaches are based on one or two
domains. In the two-domain approach, two sets of governing equations are needed to model the
flows in the two regions, and to couple the equations, additional interfacial boundary conditions
are required.

Different boundary conditions at the interface have been proposed: semi-empirical slip boundary
condition [1], continuous boundary conditions in both stress and velocity [2], and stress-jump
conditions [3–5]. Among which, the shear jump condition [3, 4] has been widely applied. For
example, Kuznetsov [6–8] applied it for analytical investigation of flow in channel partially filled
with porous medium and Partha et al. [9] employed it for viscous flow past a porous spherical
shell. Goyeau et al. [10] have introduced a transition layer between porous–fluid regions to derive
an explicit function of the stress-jump coefficient. Chandesris and Jamet [11, 12] have proposed a
two-step up-scaling method to estimate the jump coefficients for the stress-jump conditions. The
different interfacial conditions were found to have more effect on the velocity field and less effect
on the temperature field or Nusselt number distribution [13].

Associated with the different interface conditions, numerical techniques to solve the coupled
flows have been developed. Slip velocity and continuity of both velocity and stress conditions were
used by Gartling et al. [14]. Continuity of both velocity and stress condition was used by Costa
et al. [15] and Betchen et al. [16]. The stress-jump condition was used by Silva and de Lemos [17].

Recently, Yu et al. [18] developed a numerical methodology using the finite volume method,
based on a collocated variable arrangement, to treat the stress-jump condition given by Ochoa-Tapia
and Whitaker [5], which includes the inertial effects. By combining body-fitted and multi-block
grids, the numerical technique of Yu et al. [18] is effective in simulating the coupled flow in
the homogeneous fluid and porous medium regions involving complex geometries. The general
method was applied to solve three flow configurations: flow over a porous layer, flow through a
porous plug, and flow past a porous square cylinder. However, the technique is restricted to planar
flows with two velocity components, which are different from those of practical applications, such
as a stirred bioreactor with medium swirling around porous scaffolds.

Sucosky et al. [19] experimentally and numerically investigated the flow around and through
tissue-engineered cartilage constructs in a spinner-flask bioreactor agitated by a magnetic stir bar.
The commercial software FLUENT was used to simulate the flow field by assuming the cartilage
constructs as impermeable structures. Once the pressures on the assumed-solid construct surface
were determined, a porous flow model based on Darcy’s law was applied to predict the volume-
flow rate of culture medium through the porous construct. That is, the flows in the fluid medium
and porous scaffold were not coupled.

Of related interest to flow in a stirred bioreactor with porous scaffolds is the study by Yu
et al. [18], mentioned earlier, on two-dimensional flow past a porous square cylinder. However,
the flow in a stirred bioreactor system is much more complicated as it is three dimensional. The
flow behavior is largely influenced by the swirling velocity component, which may result in vortex
breakdown, as observed experimentally by Dusting et al. [20]. The phenomenon is related to that
of swirling flow and vortex breakdown in a chamber of which there have been many previous
studies [21–23], but so far these did not consider a porous medium inside.

The objective of the present work is to implement the interfacial stress-jump condition for a
non-planar flow with three velocity components. As a demonstration case, the steady, laminar,
Newtonian flow in a stirred micro-bioreactor with a porous scaffold inside is investigated. The
system, resembling that of Dusting et al. [20], consists of an open cylinder chamber filled with
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culture medium, which is stirred by a rotating bottom-wall. To avoid a full three-dimensional
simulation, the flow is assumed to be independent of the azimuthal direction, which reduces it to
an axisymmetric flow with a swirling velocity. The present numerical implementation of the jump
condition is a continuation of the previous one for planar flows with two velocity components [18].

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The micro-bioreactor with a tissue-engineering scaffold is shown schematically in Figure 1(a).
The bioreactor consists of a cylindrical chamber filled with culture medium. The culture medium
is considered as a Newtonian fluid. The medium mixing is generated by the rotating bottom-wall.
In cell culture application, the dynamic viscosity and density of the culture medium are around
10−3m2 s−1 and 103 kgm−3, respectively. A typical rotating speed of the bottom-wall is around
150 rpm.

The scaffold with a concentric hole is coaxially mounted in the bioreactor. The porosity of
the scaffold is in the range of 0.6–0.95 [24, 25] and the permeability of the scaffold is in the
range of 10−12–10−9m2 [26, 27]. As the bioreactor and scaffold can be regarded as two concentric
cylinders, the geometry is axisymmetric. The computational domain for the bioreactor with the
scaffold is shown in Figure 1(b) and an example of the domain partitioning and grid topology is
shown in Figure 1(c).

For a typical application, a case was considered in which the height of the bioreactor H was
10mm and the radius R was 10mm. It was assumed that the thickness of the scaffold was 2mm
and the diameter was 12mm. The diameter of the hole was 3mm. The scaffold was fixed at the
60% height of the bioreactor. The detailed geometric parameters in Figure 1(b) were summarized
in Table I.

The scaffold could be considered as a porous medium. Thus, the flow in a stirred bioreactor
with scaffold is a typical system of swirling flow, which contains an interface between porous
medium and homogenous fluid. The governing equations for a steady axisymmetric laminar flow
of an incompressible viscous Newtonian fluid in the homogenous fluid region are expressed as
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where vr , vz , and v� are the radial, axial, and azimuthal velocities, respectively; r and z are the
radial and axial coordinates, respectively; p is the pressure; � is the mass density of the fluid; and
� is the fluid dynamic viscosity.
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Figure 1. Bioreactor system with a tissue-engineering scaffold: (a) schematic; (b) computa-
tional domain; and (c) domain partitioning and grid topology; a large grid size was chosen

to clearly demonstrate the grid topology.

Table I. Geometric parameters for the computational domain.

R H H1 h r1 r2

Size (mm) 10 10 5 2 1.5 6

The porous medium is considered to be rigid, homogeneous, and isotropic and is satu-
rated with the same single-phase fluid as that in the homogenous fluid region. Considering
viscous and inertial effects, the governing equations for the flow in the porous region, based on

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:337–353
DOI: 10.1002/fld



SWIRLING FLOW AT INTERFACE BETWEEN POROUS AND FLUID DOMAINS 341

Darcy–Brinkman–Forchheimer extended model, can be expressed as [28, 29]
1
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where p∗ is the intrinsic average pressure, � is the fluid dynamic viscosity, � is the porosity, K is
the permeability, and CF is the Forchheimer coefficient. Note that throughout the paper, viscosity
means dynamic viscosity of the fluid but not the effective (Brinkman) viscosity. The velocity
components vr , vz , and v� in porous region are the local average velocity (Darcy velocity). The
superscript ‘*’ denotes the intrinsic average. The local average and intrinsic average can be linked
by the Dupuit–Forchheimer relationship, for example, p=�p∗.

To solve Equations (1)–(8), the appropriate boundary conditions are imposed at the interface
between the homogenous fluid and porous medium regions. The continuity of velocity components
at the interface is given by

vr |fluid=vr |porous=vr |interface (9)

vz|fluid=vz|porous=vz|interface (10)

v�|fluid=v�|porous=v�|interface (11)

The shear stress-jump condition [5] and the continuity of the normal stress at the interface can
be expressed as
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where n is a coordinate normal to the interface with its direction from porous medium to homoge-
nous fluid, vn is the velocity component perpendicular to the interface, t is a coordinate perpen-
dicular to n with its direction determined by the right-handed system, vt is the velocity component
tangential to the interface, and �1 is a coefficient associated with an excess viscous stress, whereas
�2 is a coefficient related to an excess inertial stress. Note that the stress-jump condition is based on
a generalized non-local form of the volume average Navier–Stokes equations, which accounts for
the excess surface stress encountered at the interface. Ochoa-Tapia and Whitaker’s experiment [4]
and analysis [5] indicated that both �1 and �2 are of order 1. In the present study, the jump
parameters �1 and �2 were set to 0.7 and 0, respectively, unless otherwise specified.

The non-slip boundary condition is imposed on the solid wall, that is

vr =0, vz =0, v� =0 on stationary side-wall (14)

vr =0, vz =0, v� =�r on rotating bottom-wall (15)

The deformation of the free surface due to the rotation of the fluid is proportional to the Froude
number, which is defined as

Fr=�2R2/gH (16)

where g is the gravitational constant. Since the Reynolds number was less than 1500, the Froude
number Fr was negligibly small (in the order of 10−3) and the free surface was assumed to be a
flat stress-free surface. This assumption has been applied by other researchers to investigate the
swirling flow in a chamber with a free surface [21].

The length and velocity components were scaled by 1/R and 1/(�R), respectively. The Reynolds
number is defined as Re=��R2/�. The Reynolds number was kept within 1500 to ensure steady
flow condition. The Darcy number is defined as Dar=K/R2. The aspect ratio was fixed at
H/R=1.0.

3. DISCRETIZATION

To solve the above equations, a finite volume method with a collocated variable arrangement was
used. It is based on non-orthogonal (body-fitted) grids, although the grid topology in Figure 1(c)
has a quite regular configuration. In fact, the surface vector of control volume may not be parallel
or normal to the velocity components in the present method. Thus, all the velocity components
contribute to the mass flux, which is the sum of the products of each Cartesian velocity component
multiplied by the corresponding surface vector component. The present numerical method has
been successfully applied for both swirling follow problems [22, 23] and the coupled problems
involving both porous medium and homogenous fluid regions [18, 30]. The detailed discretization
procedure can be found in [18, 31] and a brief outline is described here.

The central difference scheme was used to approximate the value of the variable and its derivative
at the cell face. The midpoint rule with the deferred correction term [32] was applied to integrate
the diffusive flux. The SIMPLEC method [33] was applied to couple the velocity and pressure. To
avoid oscillations in the pressure or velocity, the interpolation proposed by Rhie and Chow [34]
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was adopted. For v� equation, as there is no pressure term, it can be treated as a conservation
equation for a general dependent variable.

Figure 2 shows details of the interface between two different blocks. The neighboring control
volumes lying in grid-blocks A and B share the interface and the grids in these two neighboring
blocks match at that interface. There are three types of interfaces when the block-structured
grid method is employed to calculate the flow in the composite region: (i) fluid–fluid interface,
(ii) porous medium–porous medium interface, and (iii) porous medium–fluid interface.

When both blocks A and B (Figure 2) represent the same media, either fluid or porous medium,
the method proposed by Lilek et al. [35] was applied to treat the block interface. When blocks
A and B (Figure 2) represent fluid and porous medium, respectively, the velocity vector at the
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Figure 2. Interface between two blocks with matching grids.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:337–353
DOI: 10.1002/fld



344 P. YU ET AL.

interface vinterface can be expressed as

vinterface=vrer +vzez+v�e� =vnn+vt t (17)

where n is a unit vector normal to the interface with its direction from porous medium to homoge-
nous fluid and t is a unit vector tangent to the interface. By combining Equations (12), (13), and (15)
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For the condition without azimuthal velocity, the unit tangent vector t is within the r–z plane
and can be calculated as [18]

t= �rer +�zez
l

(19)

However, for the swirling flow problem, the azimuthal velocity has contribution to the tangent
velocity vt . Thus, the unit tangent vector t (Figure 2) is not within the r–z plane and should be
calculated from
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By substituting the components of vinterface in z, r , and � directions and combining Equations (18)
and (19), Equation (16) becomes
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Equation (20) can be rewritten as
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The derivatives at the interface are calculated from the values at auxiliary nodes L ′ and R′; these
nodes lie at the intersection of the cell face normal n and straight lines connecting nodes L and
N or R and NR, respectively (Figure 2). The normal gradients at the interface can be calculated
by using the first-order difference approximation:
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The velocity components at L ′ and R′ can be calculated by using bilinear interpolation or by using
the gradient at the control volume center:

vr |L ′ =vr |L +(gradvr )L ·L′L (28)

4. RESULTS AND DISCUSSION

A dimensionless mesh size of 1
200 was used to perform the simulations. The preliminary numerical

tests with three different mesh sizes of 1
100 ,

1
200 , and

1
400 confirmed that the solutions based on

mesh size of 1
200 are grid independent.

Figure 3 presents typical flow field in the bioreactor with the scaffold. The rotating bottom-wall
spins the fluid above it. The centrifugal force drives the fluid toward the side-wall. The fluid then
spirals up along the side-wall. Turning the upper corner, the fluid converges toward the center along
the free surface. Owing to the presence of the scaffold, some of the fluid changes its direction
toward the axial region. Only a small portion of fluid passes through the scaffold. Below the
scaffold, it is interesting that there is no wake or recirculation region. This is consistent with the
experiment results of Dusting et al. [20].

There is a vortex breakdown bubble attached to the free surface at Re=1200 (Figure 3(b)).
The Reynolds number for onset of vortex breakdown is between Re=1000 and 1200, which is
higher than that in the bioreactor without the scaffold (about Re=500) [21]. In addition, the size
of the vortex breakdown bubble is smaller than that in the bioreactor without the scaffold. These
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Figure 3. Flow fields and streamlines in the bioreactor at different Re; results obtained by the present
code; H/R=1, Dar=5×10−6, �=0.6: (a) Re=500 and (b) Re=1200; axisymmetric simulation.
Contour levels Ci are non-uniformly spaced, with 25 positive levels Ci =Max(variable)×(i/25)4

and 25 negative levels Ci =Min(variable)×(i/25)4.

phenomena indicate that the presence of the scaffold hampers the formation of vortex breakdown.
Another effect of the scaffold is to confine the vortex breakdown bubble to a region above the
scaffold. Partly diverted by the vortex breakdown bubble, the fluid approaches the scaffold almost
normally.

As shown in Figure 3, with an increase in Re, the recirculation region elongates toward the
free surface. This means that more fluid is convected to the upper region and the velocity around
the top surface of the scaffold becomes higher. The flow also approaches the scaffold differently
at different Re. At a high Re (Figure 3(b)), the fluid moves toward the scaffold almost normally,
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0.1 0.1

(a) (b)

Figure 4. Flow fields in the bioreactor with an impermeable scaffold at different Re; three-dimensional
simulation by FLUENT; H/R=1: (a) Re=500 and (b) Re=1200.

due to the presence of the vortex breakdown bubble, whereas at a low Re (Figure 3(a)), the flow
approaches the scaffold more obliquely. In addition, at a high Re (Figure 3(b)) the flow divides at
the top surface of the scaffold, whereas at a low Re (Figure 3(a)) the dividing point moves to the
top right corner of the scaffold. These changes in the approaching flow with Re are attributed to
the formation of a vortex breakdown bubble near the top surface.

For comparison, a full three-dimensional simulation was performed by using the commercial
software FLUENT. An impermeable scaffold was used since the scaffold in the axisymmetric case
had very small permeability with Darcy number (Dar) of 5×10−6. It was confirmed that the three-
dimensional simulation also gave axisymmetric flow. Figure 4 presents the flow fields in a vertical
plane for the three-dimensional simulations, which appear rather similar to the axisymmetric results
in Figure 3. In both simulations, the vortex breakdown bubble appears at high Re of 1200 and
disappears at low Re of 500. The shape, size, and position of the bubble are also rather similar
for both simulations. The axial velocity profiles along the axis are shown in Figure 5 for both
simulations, and the discrepancy between them is small.

The porous flow pattern is related to the external flow pattern. At higher Re, the external flow
pattern has shown that more fluid is convected to the upper region. In addition, the external flow
approaches the scaffold less obliquely. Thus, more fluid passes through the scaffold, leading to a
greater axial velocity at a higher Re (Figure 6). This trend has been clearly shown in Table II, which
demonstrates that the axial component of velocity at the center of the scaffold becomes higher
with an increase in Re. Figure 6 also shows that the porous flow at the right corner is especially
stronger at Re=1200 than that at Re=500. The formation of the vortex breakdown bubble diverts
some of the external flow to the right-hand side, thus causing an even higher velocity region there.

The porous flow at Re=1200 has a relatively larger radial velocity component toward the left-
hand side than that at Re=500 (Figure 6; see also Table II). This is because more fluid is convected
to the upper region at higher Re, as explained before. In addition, the presence of the nearby vortex
breakdown bubble may lead to larger interface velocity at the top surface (Figure 3(b)).
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Figure 5. Axial velocity profiles along the axis in three-dimensional and
axisymmetric simulations, Re=500.

Figure 7 shows the pressure distributions along the scaffold surface at different Re. The pressures
are presented with respect to that at the top of the axis. The pressure is high along the top surface
and drops abruptly along the two side surfaces. The pressure is low along the bottom surface. At
the dividing point (on top surface), the pressure is higher. Since only a small proportion of fluid
can pass through the scaffold, the velocity at the dividing point decreases to a very small value,
causing an increase in pressure according to the Bernoulli equation. Thus, the peak pressure is
located at the top surface where the flow divides.

Figure 7 also shows that the pressure distribution changes much with the variation of Re. At
a higher Re, the pressure at the top surface is higher and more non-uniform because the flow
approaches the scaffold less obliquely (see Figure 3). With the flow at a more normal angle,
the pressure drop between the top and right surfaces is also higher. There are other influences on
the pressure distribution. The flow pattern changes at different Re due to the balance between the
centrifugal force and the pressure gradient [22, 23]. The different flow patterns result in different
pressure variations across streamlines and thus affect the pressure distribution on the scaffold
surfaces.

The porous flow within the scaffold is much smaller than the surrounding flow (Figure 3). Thus,
the swirling flow behavior, in particular the vortex breakdown phenomenon, seems to be mainly
influenced by the chamber aspect ratio, the Reynolds number, the scaffold configuration, and the
scaffold location. The effects of the permeability and porosity are secondary on vortex breakdown
over the present range of parameters. However, the porous flow through the scaffold is significantly
affected by the permeability as characterized by the Darcy number Dar. Table III clearly shows
that the porous velocity is notably higher at a higher Dar. This is expected because a higher Darcy
number means more porous flow for a certain pressure drop.
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Figure 6. Flow fields within the scaffold in the bioreactor at different Re; H/R=1,
Dar=5×10−6, �=0.6: (a) Re=500 and (b) Re=1200.

Table II. Variation of velocity components at the center of the scaffold
with Re (H/R=1, Dar=5×10−6, �=0.6).

Re Axial velocity (magnitude) Radial velocity (magnitude)

500 2.41×10−4 3.50×10−5

1200 3.93×10−4 9.14×10−5

Figure 8 shows the pressure distributions along the scaffold surface at different Dar. The
pressures are presented with respect to that at the top of the axis. The trends of pressure distributions
are similar to those in Figure 7. The pressure is high along the top surface, drops abruptly along
the two side surfaces, and is low along the bottom surface. There is a peak pressure on the top
surface, associated with the dividing point (Figure 3).

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:337–353
DOI: 10.1002/fld



350 P. YU ET AL.

L

P

0 0.3 0.6 0.9 1.2 1.5
-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015
Re = 500
Re = 1000
Re = 1500

•• • • • AA CB D

B

D

C

A

Scaffold 

Figure 7. Pressure distributions along the scaffold surface for different Re; the reference pressure point is
located at the top of the axis, where the pressure is assigned zero.

Table III. Variation of velocity components at the center of the scaffold
with Dar (H/R=1, Re=1000, �=0.6).

Dar Axial velocity (magnitude) Radial velocity (magnitude)

1×10−5 6.84×10−4 2.50×10−4

1×10−6 7.46×10−5 2.48×10−5

5×10−7 3.68×10−5 1.21×10−5

The pressure distribution around the permeable scaffold is different from that of the solid one.
The pressure drops between the top and side surfaces are slightly smaller for the permeable
scaffolds, due to some of the flow being permitted to go through the scaffold. However, as discussed
before, there are other complex influences on the pressure distribution. The flow pattern changes
slightly at different Dar because the porous flow within the scaffold is different. The different
flow patterns will give different pressure variations across streamlines and thus affect the pressure
distribution for scaffolds with different permeabilities. These results indicate that it is important to
couple the flows between the homogeneous region and porous medium regions, rather than treat
them separately [19].

The results (Figure 8) also show that the variation of the permeability does not significantly
change the pressure drop between the top and bottom surfaces. This pressure drop is the main
driving force for the porous flow as it is mainly in the axial direction. From Darcy’s law, if the
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Figure 8. Pressure distributions along the scaffold surface for different Dar; the reference pressure point
is located at the top of the axis, where the pressure is assigned zero.

Table IV. Variation of velocity components at the center of the scaffold
with �1 (H/R=1, Re=1200, Dar=5×10−6, �=0.6, �2=0).

�1 Axial velocity (magnitude) Radial velocity (magnitude)

−0.7 4.00×10−4 9.49×10−5

0 4.00×10−4 9.43×10−5

0.7 3.93×10−4 9.14×10−5

pressure drop is not changed, the average velocity within the scaffold is approximately proportional
to the permeability. This explains why the porous velocity is higher at higher permeability (see
Table III).

The jump parameters �1 and �2 used in the above simulations are fixed at 0.7 and 0, respectively.
Previous studies (e.g. [13, 17, 18]) have shown that the jump parameters have some effect on
velocity profile near the interface. As for the velocity in the bulk region of the scaffold, the present
results indicate that the jump parameters have a small effect (see Table IV).

5. CONCLUDING REMARKS

The present study implements the interfacial stress-jump condition for a non-planar flow with
three velocity components. The steady, laminar, Newtonian flow in a stirred micro-bioreactor with
a porous scaffold inside was investigated. The present swirling flow is axisymmetric as the three
velocity components are functions of only the axial and radial coordinates. As the technique is based

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:337–353
DOI: 10.1002/fld



352 P. YU ET AL.

on finite volume method with body-fitted and multi-block grids, the porous–fluid interface can be a
non-flat surface. The present implementation can be extended to deal with a full three-dimensional
situation by modifying the unit tangent vector.

For Reynolds number greater than 1200, a vortex breakdown bubble develops and attaches itself
to the free surface. The scaffold delays the onset of vortex breakdown and confines the bubble
to a region above the scaffold. The presence of the bubble results in a relatively larger radial
velocity component within the scaffold. The Reynolds number has notable effects on the flow field
both outside and inside the scaffold. The flow field outside the scaffold is not affected much by
the variation in the permeability. However, the porous flow within the scaffold is higher at larger
permeability. The pressure distributions along the scaffold surfaces are different for porous and
solid cases. Thus, it is important to model the bioreactor flow system as a coupled flow involving
porous medium and homogeneous fluid.
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